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Impact Cratering

Dominant geologic process for solids in solar system

Types of impact craters:
• Simple

– Diameter < 3 km on Earth, < 15 km on moon
– Floor consists of breccia
– Meteor Crater (Arizona)

• Complex
– Diameter > 3 km on Earth, > 20 km on moon
– Central peaks (collapsed bowl-shaped crater)
– Floor has highly shocked and melted debris, melt pools sometimes
– Flynn Creek Crater (Tennessee)

• Multiring basins
– Diameter 100s to 1000s of km
– Multiple concentric circular scarps
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Stages of Impact Cratering

1. Contact and compression:
transfer of energy and
momentum, shock waves

2. Excavation: target material
vaporized or ejected from
crater, creating ejecta blanket

3. Modification: debris flows
down toward center of crater
(crater collapse)

Image from
http://www.meteorimpactonearth.com/mechanics.html.

Los Alamos National Laboratory 10/11/2019 | 3



174 Known Impact Structures on Earth

Image courtesy of University of New Brunswick Planetary and Space Science Center Earth Impact Database
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Impacts Vary by Frequency and Energy

Image courtesy of LPL
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Components of Hydrocode

Lagrangian forms of conservation of momentum (1), mass (2),
energy(3):

ρDu
Dt

= −∇P (1)

Dρ
Dt

+ ρ∇ · u = 0 (2)

dE
dt

+ P
dV
dt

= 0, (3)

D: Lagrangian differential
(
∂
∂t + u · ∇

)
EOS: relates pressure, density, internal energy

Constitutive model: stress tensor as a function of strain, strain rate
effects, internal energy, damage
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Hydrocode Methods and Approaches

Discretization Methods:
finite-difference, finite element,
Smooth Particle Hydrodynamics
(SPH)

Approaches: Eulerian,
Lagrangian,
Arbitrary-Lagrangian-Eulerian
(ALE)

Image from
http://appliedmechanics.asmedigitalcollection.asme.org/
article.aspx?articleid=1414433
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Solid Mechanics and Damage
• Strength: ability to resist

changing shape
• Strain: measure of

deformation

• Stress: forces that cause
deformation

• Elastic and plastic properties

Damage as an on/off switch

Image from
http://gamingrockson.blogspot.com/2012/09/top-5-worst-

ways-to-die-in-super-mario.html

Damage Accumulates

Image from
https://i.ytimg.com/vi/AyYXWS61zEc/hqdefault.jpg
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Constitutive Models

Figure: Sample stress-strain curves for perfectly plastic
materials, materials that harden linearly, ductile materials,
and brittle materials.

Perfect Plasticity†

τ = τy

Linear Hardening†

τ = τy + K̄ ε

τ : flow stress (Pa)

τy : reference yield stress (Pa)

K̄ : hardening parameter

ε : equivalent plastic strain

†Simo, J. C. and T. J. R. Hughes. Computational Inelasticity Vol 7, Springer Science & Business Media (2006).
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Constitutive Models

Johnson-Cook†

τ = [A + Bεn]︸ ︷︷ ︸
stress as function of strain

[
1 + C ln

(
ˆ̇ε
)]

︸ ︷︷ ︸
strain rate effects

[
1− T̂ m

]
︸ ︷︷ ︸

temperature effects

Steinberg-Guinan‡

G = G0

[
1 +

(
G′P
G0

)
P
η

1
3

+

(
G′T
G0

)
(T − 300)

]
τ = τy [1 + β (ε+ εi )]n

[
1 +

(
τ ′P
τy

)
P
η

1
3

+

(
G′T
G0

)
(T − 300)

]
† Johnson, G. R. and W. H. Cook. “A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates

and High Temperatures,” Proceedings Seventh International Symposium on Ballistics pp 541–547 (1983).
‡ Steinberg, D., S. Cochran, and M. Guinan. “A constitutive model for metals applicable at high-strain rate,” Journal of

Applied Physics 51(3): 1498–1504 (1980).
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Constitutive Models
Preston-Tonks-Wallace

G = G0

(
1− αT̂

)
Thermal Activation Regime

τ̂s = s0 − (s0 − s∞) erf

[
κT̂ ln

(
γξ̇

ε̇

)]

τ̂y = y0 − (y0 − y∞) erf

[
κT̂ ln

(
γξ̇

ε̇

)]

τ̂ = τ̂s +
1

p

(
s0 − τ̂y

)
ln

1−
[

1− exp

(
−p

τ̂s − τ̂y

s0 − τ̂y

)]
exp

− pθε(
s0 − τ̂y

) [
exp

(
p
τ̂s−τ̂y
s0−τ̂y

)
− 1
]



Overdriven Shock Regime

τ̂s = max

{
s0 − (s0 − s∞) erf

[
κT̂ ln

(
γξ̇

ε̇

)]
, s0

(
ε̇

γξ̇

)β
}

τ̂y = max

{
y0 − (y0 − y∞) erf

[
κT̂ ln

(
γξ̇

ε̇

)]
,min

[
y1

(
ε̇

γξ̇

)y2
, s0

(
ε̇

γξ̇

)β
]}

Preston, D. L., D. L. Tonks, and D. C. Wallace. “Model of plastic deformation for extreme loading conditions.” Journal of
Applied Physics 93(1): 211–220 (2003).
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Why Use FLAG to Model Impacts?
FLAG: A Big ASC Code
• Hydrodynamics code developed and maintained by LANL
• Arbitrary Lagrangian-Eulerian (ALE)
• Finite volume (conservative)
• Variety of Equations of State (EOS) and constitutive models
• Has been verified and validated for impact cratering†
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Experimental Data
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(Left) Computation times from FLAG mesh resolution study.† (Right) Crater depths from FLAG validation problem.†

Caldwell, W. K., A. Hunter, C. S. Plesko, and S. Wirkus. “Verification and Validation of the FLAG Hydrocode for Impact
Cratering Simulations.” Journal of Verification, Validation and Uncertainty Quantification 3(3):031004 (2019).
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Asteroid 16 Psyche

• Largest M-type asteroid in Main Asteroid Belt
• Upcoming NASA mission Psyche: Journey to a Metal World
• Bulk density estimates: 1.4± 0.3− 4.5± 1.4 g/cm3, some as

high as 7.6 g/cm3

• Believed to be differentiated planet core
• Two large impact structures in Southern hemisphere

– 53± 15 km and 67± 15 km
diameter

– 6.4± 0.64 km depth

– Crater formation dominated by
strength rather than gravity

Image of Psyche with craters in blue. Image from
Shepard et al., “Radar observations and shape model of
asteroid 16 Psyche,” Icarus (2017).
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Larger Crater: 2D Axisymmetric Simulation
Setup
• Resolution ∼ 15 cells per projectile radius (cppr)
• ∼ 2.3 million zones
• 180 processors
• Materials: Fe, Ni, SiO2, Monel
• Psyche: semicircle, radius 125 km
• Impactor: semicircle, radius 5 km
• Void: (500 km × 500 km square)\ (Psyche

⋃
Impactor)
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Transient Crater Estimate

Theoretical crater profiles and shape model data for comparison. Image from Caldwell, “Differential Equation Models for
Understanding Phenomena beyond Experimental Capabilities,” Arizona State University (2019).
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Larger Crater: 2D Psyche Materials &
Initialization
Material ρ0 τY G0 Material EOS(

kg/m3
)

(GPa) (GPa) Model

Fe 7795 0.05–0.275 87.2 PTW SESAME
Monel 8810 0.838 68.8 SG MG

Ni 8900 kg/m 0.14 85.5 SG MG

(Left) 2D axisymmetric simulation at time 0 and (Right) zoomed to show detail.
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Asteroid Obliteration

Q∗D = Qs +
QB

e∗

Qs ∝
1
R̄

QB = QG −Q2 −Qω; QB = F ′′GρR̄2 (corrected)

QG = FGρR̄2; QG ∝
GM
R̄

Q2 =
2π 3
√

2GρR̄2

5

Asphaug, E., E. V. Ryan, and M. T. Zuber. “Asteroid Interiors,” Asteroids III, University of Arizona Press (2002).

Dobrovolskis, A. R. and D. G. Korycansky. “Internal gravity, self-energy, and disruption of comets and asteroid,” Icarus 303:
234–250 (2018).
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Larger Crater: 2D Solid Results
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Crater profiles from simulations modeling Psyche as solid.
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Larger Crater: 2D Target and Impactor Studies
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(Left) Target study with SiO2 impactor. (Right) Impactor study with Monel target.

Crater dimensions appear to scale roughly with yield strength in the
target study and density in the impactor study.
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Larger Crater: 2D Porosity Study
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(Left) Crater profiles from 2D porosity study. (Right) Asteroid disruption from simulation with solid iron impacting 80% porous
iron.
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Larger Crater: 2D Results Summary

Simulation of solid SiO2 impacting solid Monel, showing the overturned flap.

• Depth overestimation and diameter underestimation =⇒
oblique impact angle

• Porosity study =⇒ porosity likely around 30%–50%
• Impactor density and target yield stress key to crater formation
• 3D simulations are needed to vary impact angle.
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Larger Crater: Psyche 3D Simulation Setup

• 3D Cartesian
• Psyche: Shape model, spherical cap of radius 110 km
• Impactor: Sphere, 5 km radius
• Void: Void Box \ (Psyche & Impactor), 500 km x 500 km
• Zone size: 1000 m – 10000 m (5 cppr – 0.5 cppr)
• Zones: ∼ 33.4 million
• Proccesors: 1080

Video of Psyche simulation at initialization. Video credit: John Patchett; Shape model: Shepard et al., “Radar observations
and shape model of asteroid 16 Psyche,” Icarus (2017).
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Larger Crater: 3D Results
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(Left) Crater formation from solid Monel impacting 50% porous Monel 60◦ from vertical, about 40 seconds after impact.
(Right) Crater aspect ratios from 3D simulations, with shaded uncertainties.
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Larger Crater: 3D Profiles
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Larger Crater: 3D Results

FLAG simulation of Monel-Monel 45◦ impact about 92 seconds after impact, colored by velocity.
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Larger Crater: 3D Simulation Video

Simulation video of solid Monel impacting 50% porous Monel 60◦ from vertical. Video credit: John Patchett; Shape model:
Shepard et al., “Radar observations and shape model of asteroid 16 Psyche,” Icarus (2017).
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3D Results Summary

• Impact angle likely oblique > 45◦

• Likely 30%–50% porous
• Best matches

– Monel-Monel, 50% porosity, 60◦ from vertical
– Monel-Monel, 30% porosity, 60◦ from vertical
– Ni-Ni, 50% porosity, 60◦ from vertical

• Yield stress appeared to dominate in 2D, while this trend did not
hold for 3D

• Many simulations considerably underestimated diameter =⇒
porosity may not be homogeneous

• 3D simulations provide more robust studies
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Smaller Crater: Preliminary Results

• Resolution ∼ 11 cppr
• ∼ 2.3 million zones
• 180 processors
• Materials: Fe, Ni, SiO2, Monel
• Psyche: semicircle, radius 125 km
• Impactor: semicircle, radius 3.75 km
• Void: (500 km 500 km square) \ (Psyche

⋃
Impactor)

Image of Psyche with craters in blue. Image from Shepard et al., “Radar observations and shape model of asteroid 16
Psyche,” Icarus (2017).
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Smaller Crater: Preliminary Results
Solid targets: underestimated diameter
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Crater profiles from 2D axisymmetric simulations testing solid impactors and solid targets.
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Smaller Crater: Preliminary 3D Results

3D FLAG simulation of Ni-Ni 45◦ solid impact. The crater diameter was 38.18 km, and the crater depth was 5.5 km. This
preliminary result is from a coarse run of resolution 2 cppr. The diameter is within the error bars for the shape model, and

the depth is within the error bar if correcting for the underestimation expected from coarse resolutions in FLAG.
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Smaller Crater: Preliminary Results
Non-homogeneous porosity

• Inner Radius 100
km
Outer Radius 25 km

ϕinner ϕouter ρbulk
40% 70% 4335
40% 80% 4017
50% 60% 4088
50% 70% 3771
50% 80% 3454
60% 70% 3207
60% 80% 2890

• Inner Radius 110
km
Outer Radius 15 km

ϕinner ϕouter ρbulk
50% 60% 4206
50% 70% 4007
50% 80% 3808
60% 70% 3325
60% 80% 3126

• Inner Radius 120
km
Outer Radius 5 km

ϕinner ϕouter ρbulk
50% 60% 4336
50% 70% 4267
50% 80% 4198
60% 70% 3455
60% 80% 3386

Densities are listed in kg/m3.
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Smaller Crater: Preliminary Results

Simulation setups with (Left) inner radius 100 km and outer radius 25 km, (Center) inner radius 110 km and outer radius 15
km, and (Right) inner radius 120 km and outer radius 5 km.
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Smaller Crater: Preliminary Results

Simulations with inner ϕ = 50% and (Left) outer ϕ = 60%∼270 s after impact, (Center) outer ϕ = 60%∼255 s after
impact, and (Right) outer φ = 70%∼25.5 s after impact.
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Smaller Crater: Preliminary Results
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Smaller Crater: Preliminary Results

Lessons Learned
• Solid: Mostly reasonable depths, underestimated diameters
• Non-homogeneous porosity: large discrepancies in both depths

and diameters
• Larger crater results indicate porosity may not be homogeneous

throughout
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Smaller Crater: Preliminary Results

Rubble pile: hexagonal packing
Circle radius: 12.5 km
Macroporosity: 7.7%

Microporosity Bulk Density
0 % 8129.643 kg/m3

30 % 5690.750 kg/m3

40 % 4877.786 kg/m3

50 % 4064.822 kg/m3
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Smaller Crater: Preliminary Results

Rubble pile: square packing
Circle radius: 12.5 km
Macroporosity: 17.4%

Microporosity Bulk Density
0 % 7279.883 kg/m3

30 % 5095.918 kg/m3

40 % 4367.930 kg/m3

50 % 3639.942 kg/m3
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Smaller Crater: Preliminary Results
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Smaller Crater: Preliminary Results
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Smaller Crater: Preliminary Results
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Smaller Crater: Preliminary Results
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Smaller Crater: Preliminary Results

−40 −20 0 20 40
Radius (km)

−30

−20

−10

0

10

20

30

40

50
De

pt
h 
(k
m
)

Elliptical Profile
Circular Profile
Shape Model Data ((ith error bars)
Tra sie t Crater Estimate
He)ago al Packi g, Solid
Square Packi g, Solid
He)ago al Packi g, 40% Microporosity
Square Packing, 40% Microporosity
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Forthcoming Work

(Left) 3D simulation setup with close hexagonal packing. (Right) 3D simulation setup with square packing.
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Forthcoming Work

Initialization of simulation of formation of Psyche’s largest crater, modeled as a rubble pile of 12.5 km spheres in a square
packing.
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Forthcoming Work

Crater formation from simulation of 3D square-packed rubble pile (Left) 5 s (Right) 10 s after impact.

Largest crater formation from simulation of 3D square-packed rubble pile (Left) 15 s (Right) 381 s after impact.
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Forthcoming Work

Crater formation from simulation of 3D square-packed rubble pile (Left) 5 s (Right) 10 s after impact.

Smaller crater formation from simulation of 3D square-packed rubble pile (Left) 15 s (Right) 381 s after impact.
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Conservation Laws and Hugoniot Equations

Conservation Laws

Momentum: ρDu
Dt = −∇P

Mass: Dρ
Dt + ρ∇ · u = 0

Energy: dE
dt + P dV

dt = 0

Hugoniot Equations

Momentum: P − P0 = ρ0upU

Mass: ρ (U − up) = ρ0U

Energy: E −E0 = P+P0
2

(
1
ρ0
− 1

ρ

)
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Conservation of Momentum
Let F = force, m = mass, a = acceleration, A = area, P = pressure, and u =
velocity. From Newton’s second law, F = ma.

P2A2 − P1A1 = m
du
dt

− (P1A1 − P2A2) = m
du
dt

−
[(

P +
dP
dx

dx
)

A− PA
]

= m
du
dx

dx
dt

−dP
dx

dxA = m
du
dx

dx
dt

−dP
dx

= ρu
du
dx

because m = ρdxA

−∇P = ρ
Du
Dt

in Lagrangian form.

https://www.grc.nasa.gov/www/k-12/airplane/conmo.html
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Von Mises Effective Stress

Stress tensor:

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 =

s11 s12 s13
s21 s22 s23
s31 s32 s33

 +
∑ σkk

3

Second invariant: J2 = 1
2

(
s2

11 + s2
22 + s2

33

)
Von Mises flow stress =

√
3J2
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Constitutive Models

Preston-Tonks-Wallace

G = G0

(
1− αT̂

)

τ̂ = τ̂s+
1
p
(s0 − τ̂y ) ln

1−
[

1− exp

(
−p

τ̂s − τ̂y

s0 − τ̂y

)]
exp

− pθε

(s0 − τ̂y )
[
exp

(
p τ̂s−τ̂y

s0−τ̂y

)
− 1
]


G: shear modulus (Pa)
G0: reference shear modulus (Pa)
α: temperature parameter
T̂ : homologous temperature
ˆtau: dimensionless stress
τ̂s : dimensionless work-hardening saturation stress
p: Voce hardening law constant
s0: dimensionless saturation stress at 0 K
τ̂y : dimensionless yield stress
θ: initial strain hardening
ε: equivalent plastic strain
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PTW

Preston, D. L., D. L. Tonks, and D. C. Wallace. “Model of
plastic deformation for extreme loading conditions.” Journal
of Applied Physics 93(1): 211–220 (2003).
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Psyche Setup Simulation Details

2D

• Axisymmetric

• Psyche: Semicircle, 125 km
radius

• Impactor: Semcircle, 5 km radius

• Void: Box\(Psyche & Impactor),
500 km x 500 km

3D

• Cartesian

• Psyche: Shape model, spherical
cap 110 km radius

• Impactor: Sphere, 5 km radius

• Void: Box\(Psyche & Impactor),
500 km x 500 km

2D 3D
Zone size min 330 m 1000 m
Zone size max 330 m 10,000 m

Zones 2,301,285 33,382,400
Processors 180 1080

ALE strategy Eulerian Eulerian
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Psyche Impactor Size

db = L
√

ρI
ρT

Using 1/4 for ρ ratio and db = 5, L = 10 km.
Many other estimates were around 7 km – 12 km.

Melosh, H. J. Planetary Surface Processes Vol 13, Cambridge University Press (2011).

Shepard, M. K., J. Richardson, P. A. Taylor, L. A. Rodriguez-Ford, A. Conrad, I. de Pater, M. Adamkovics, K. de Kleer, J. R.
Males, K. M. Morzinski et al. “Radar observations and shape model of asteroid 16 Psyche,” Icarus 281: 388–403 (2017).
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Crater Formation Time

T = 0.8

√
V

1
3

g

Largest shape: ellipsoid with 35 km, 6.4 km, and 35 km semi-axes

V =
1
2

4
3
π(35)(6.4)(35)

g = 0.29
T ≈ 240 s

Schmidt, Robert M. and Kevin R. Housen. “Some recent advances in the scaling of impact and explosion cratering.”
International Journal of Impact Engineering 5(1–4): 543–560, 1987.
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Strength vs Gravity
π2 = ga

U2 dominates gravity
π3 = Y

ρU2 dominates strength

π2 =
0.29(5000)

45002 = 7.2E − 5

π3 =
250000000

8810 (45002)
= 1.4E − 3

π3 > π2

Holsapple, Keith A. and Kevin R. Housen. “Craters from Impacts and Explosions,”
http://keith.aa.washington.edu/craterdata/scaling/theory.pdf.
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Modeling Impact Structures on Asteroid 16
Psyche: 3D

Crater Dimension 6.4 ± 0.64 km† 67 ± 15 km†

Impactor Psyche Porosity Angle Depth Diameter
Monel Monel Solid 45o 7 km 35.1438 km
Monel Monel Solid 60o 5.3 km 36.8 km
SiO2 Monel Solid 45o 0.1 km 41.0122 km
SiO2 Monel Solid 60o 1.1 m 28.5 km

Monel Monel 30% 45o 5.5 km 39.598 km
Monel Monel 30% 60o 10.4 km 51.5 km
Monel Monel 50% 45o 14.5 km 42.4264 km
Monel Monel 50% 60o 12 km 60 km

Table: FLAG simulation results from 3D oblique impacts. Bold results indicate values that lie within the error bars of the
actual crater dimensions. Italic results indicate values that lie within the error bars after correct for the expected numerical
error based on the glass-water validation problem.

† Shepard, M. K., J. Richardson, P. A. Taylor, L. A. Rodriguez-Ford, A. Conrad, I. de Pater, M. Adamkovics, K. de Kleer, J. R.
Males, K. M. Morzinski et al. “Radar observations and shape model of asteroid 16 Psyche,” Icarus 281:388–403 (2017).
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